cloois:

The distribution of opening moves in chess has been shown to follow Zipf’s law (a linguistic model of the occurrence of words in written English):

We perform a quantitative analysis of extensive chess databases and showthat the frequencies of opening moves are distributed according to a power law with an exponent that increases linearly with the game depth, whereas the pooled distribution of all opening weights follows Zipf’s law with universal exponent. We propose a simple stochastic process that is able to capture the observed playing statistics and show that the Zipf law arises from the self-similar nature of the game tree of chess. Thus,in the case of hierarchical fragmentation the scaling is truly universal and independent of a particular generating mechanism. Our findings are of relevance in general processes with composite decisions.